Step of Proof: l_before_antisymmetry
11,40
postcript
pdf
Inference at
*
1
1
I
of proof for Lemma
l
before
antisymmetry
:
.....assertion..... NILNIL
1.
T
: Type
2.
l
:
T
List
3.
x
:
T
4.
y
:
T
5. no_repeats(
T
;
l
)
6. [
x
;
y
]
l
7. [
y
;
x
]
l
[
x
;
x
]
l
latex
by ((Using [`L2',[
x
;
y
;
x
]] (BackThruLemma `sublist_transitivity`))
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
[
x
;
x
]
[
x
;
y
;
x
]
C
2
:
C2:
[
x
;
y
;
x
]
l
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
Lemmas
sublist
transitivity
origin